Sean el polinomio
\[ P(x) = a_nx^n + a_{n – 1}x^{n – 1} + a_{n – 2}x^{n – 2} + \ldots + a_1x + a_0 \]
y \( x_1, x_2, x_3, \ldots, x_n \) sus ceros entonces:
\[ x_1 + x_2 + x_3 + \ldots + x_n = -a_{n – 1}/a_n \]
\[ x_1 x_2 + x_1 x_3 + \ldots + x_1 x_n + \ldots + x_{n – 1} x_n = a_{n – 2}/a_n \]
\[ x_1 x_2 x_3 + x_1 x_2 x_4 + \ldots + x_1 x_2 x_n + \ldots + x_{n – 2} x_{n – 1} x_n = -a_{n – 2}/a_n \]
\[ \vdots \]
\[ x_1 x_2 x_3 \ldots x_n = (-1)^n a_0/a_n \]